
W.I.S.V.
‘Christiaan Huygens’

Program Booklet

Colophon
This program is a single production by the CHipCie, a committee
of W.I.S.V. ‘Christiaan Huygens’ in Delft, for the purpose of the
Benelux Algorithm Programming Contest 2008, held on the 25th of
October 2008 at the Delft University of Technology.

Texts		 : Thomas Verwoerd
		 Boaz Pat-El
		 Robin van den Berg
		 Raul Kooter
		 Thomas Schaap
Logo		 : Joey van den Heuvel
Layout		 : Robin van den Berg

This booklet was printed by Drukwerkdeal.nl.
All information in this booklet is subject to change. Check the
website for the most recent information.

If you have any questions, please contact the CHipCie:
W.I.S.V. ‘Christiaan Huygens’
Mekelweg 4
2628 CD Delft
Contact person	 : Thomas Verwoerd
Telephone		 : +31 (0)15-278 2532
Fax			 : +31 (0)15-278 2690
E-mail			 : chipcie@ch.tudelft.nl
Website		 : http://www.bapc.eu/

1

Preface
“You can learn how to program in Java or Pascal” is a song I learned
in my first year. I was young and naïve and convinced that every
problem was easily solvable in any programming language. But
after a few months of learning to program, I found out there is
more to it than just bluntly writing code in a Notepad window and
compiling it. I came to see a good comprehension of the problem
was required to be able to write an efficient algorithm.
Six years wiser, I have the honor of leading the contest that
challenges the skills of writing efficient algorithms and solving
problems of students from the Benelux. You are reading the
program booklet of the Benelux Algorithm Programming Contest
2008 organised at the Delft University of Technology.
For some people the Benelux Algorithm Programming Contest is
the first step towards the ICPC World Finals. Others might already
have proven themselves as the best of their universities at their
local qualifying rounds. For the best contestants the next step
will be the North Western European Regional Contest (NWERC) in
Utrecht. Although some universities use this contest as a selection
for the NWERC, it will be a good practice and a chance to win some
nice prices for everyone.
This booklet provides information about the Benelux Algorithm
Programming Contest. Additional information and updates can be
found on the website, http://www.bapc.eu, and the organisation
can be contacted any time at chipcie@ch.tudelft.nl.
I wish everybody the best of luck with the preparations and may
the best team win.

Thomas Verwoerd
Contest Director BAPC 2008

2

3

Contents
Colophon� 1
Preface� 2
Route Description� 5
Day Program� 6
Example Problem� 7
Systems & Tools� 9
The Judges� B
Rules & Regulations� C
Tips & Tricks� 11
Organisation� 13
Special Thanks� 15

4

Advertentie

5

Route Description

Location
Faculty of EEMCS
Cornelis Drebbelweg 5
2628 CM Delft

By public transport
By train, travel to Delft Central Station. From there take bus
129 to Rotterdam. Get off at bus stop “Drebbelweg”. For a
detailed train and bus schedule, visit http://www.9292ov.nl or
http://www.connexxion.nl.

By car
Because of the
reconstruction of
the Mekelpark you
will probably have to
take a detour: follow
the yellow sign to
“Elektotechniek”.
The faculty of EEMCS
is best accessible by
car from highway
A13. From both
directions take exit
10 Delft Zuid/TU
Delft. Immediately
take the exit toward
Schoemakerstraat
and turn left at the
end. Follow the
road turning right to
Watermanweg. At the end of this road, turn left and take the first
right (Kluyverweg). At the end turn right to the Rotterdamseweg.
After 1.1 kilometers turn right to the Cornelis Drebbelweg. Continue
until Building 35 appears to your left.

6

Day Program

Time	 Activity
10:00	 Team registration; coffee and tea
10:30	 Welcoming speech and instructions
11:00	 Start of test session
11:45	 End of test session; lunch
12:30	 Last minute remarks
13:00	 Start of contest
18:00	 End of contest; drinks
18:30	 Award ceremony
20:00	 Dinner

Example Problem

Euro Efficiency
From: NWERC 2002

On January the 1st 2002, The Netherlands, and several other
European countries abandoned their national currency in favour
of the Euro. This changed the ease of paying, and not just
internationally.
A student buying a 68 guilder book before January the 1st could
pay for the book with one 50 guilder banknote and two 10 guilder
banknotes, receiving two guilders in change. In short: 50 + 10
+ 10 - 1 – 1 = 68. Other ways of paying were: 50 + 25 - 5 - 1
- 1, or 100 - 25 - 5 - 1 – 1. Either way, there are always 5 units
(banknotes or coins) involved in the payment process, and it could
not be done with less than 5 units.
Buying a 68 Euro book is easier these days: 50 + 20 – 2 = 68, so
only 3 units are involved. This is no coincidence; in many other
cases paying with euros is more efficient than paying with guilders.
On average the Euro is more efficient. This has nothing to do, of
course, with the value of the Euro, but with the units chosen. The
units for guilders used to be: 1, 2.5, 5, 10, 25, 50, whereas the
units for the Euro are: 1, 2, 5, 10, 20, 50.
For this problem we restrict ourselves to amounts up to 100 cents.
The Euro has coins with values 1, 2, 5, 10, 20, 50 eurocents. In
paying an arbitrary amount in the range [1, 100] eurocents, on
average 2.96 coins are involved, either as payment or as change.
The Euro series is not optimal in this sense. With coins 1, 24, 34,
39, 46, 50 an amount of 68 cents can be paid using two coins. The
average number of coins involved in paying an amount in the range
[1, 100] is 2.52.
Calculations with the latter series are more complex, however.
That is, mental calculations. These calculations could easily be
programmed in any mobile phone, which nearly everybody carries
around nowadays. Preparing for the future, a committee of the
European Central Bank is studying the efficiency of series of coins,
to find the most efficient series for amounts up to 100 eurocents.
They need your help.

7

Problem
Write a program that, given a series of coins, calculates the average
and maximum number of coins needed to pay any amount up to
and including 100 cents. You may assume that both parties involved
have sufficient numbers of any coin at their disposal.

Input
The first line of the input contains the number of test cases. Each
test case is described by 6 different positive integers on a single
line: the values of the coins, in ascending order. The first number
is always 1. The last number is less than 100.

Output
For each test case the output is a single line containing first the
average and then the maximum number of coins involved in paying
an amount in the range [1, 100]. These values are separated by
a space. As in the example, the average should always contain
two digits behind the decimal point. The maximum is always an
integer.

Example
Input
3
1 2 5 10 20 50
1 24 34 39 46 50
1 2 3 7 19 72

Output
2.96 5
2.52 3
2.80 4

8

9

Systems & Tools
By Jeroen Dekkers

During the contest the computer is your most valuable resource
(except maybe for coffee). Some explanation about what you can
expect from our systems is therefore in order.

Hardware
During the contest each team will have exactly one computer (with
TFT screen, keyboard and mouse). Because of possible revisions by
the faculty, the specification of the computers are unknown at the
time of the publication of this booklet, but they will vary between
two years old and brand new. In any case, the jury will use similar
machines to judge your submissions.

Software
The only operating system available to you will be Debian GNU/
Linux. The jury will run your submissions on the same system with
the same compilers. During the contest you will be able to choose
between the languages C, C++ or Java. Using different languages
for different solutions is possible and allowed.

Versions
The machines will be based on the Lenny release of Debian GNU/
Linux.
Window Managers
Available window managers are:

GNOME 2.22 (default)
KDE 3.5
Xfce 4.4
Ion3 20080707

Compilers
Available compilers are:

GCC 4.3.1 (C and C++)
SUN Java 6 update 7

•
•
•
•

•
•

A

Editors
Available editors are (among others):

Emacs 22.2
Vim 7.1.314
Eclipse 3.2.2
Netbeans 6.0.1
Nano 2.0.7
Kate 3.5

Disclaimer
Given that this booklet is printed a long time before the
BAPC takes places, the provided list is only an indication
and is likely to change.
An an up-to-date list is provided on our website. If your favourite
window manager or editor is not on the list or if you have other
requirements, you can send us a request and we will look whether
it is possible to install it.

•
•
•
•
•
•

B

Hunting-guild ‘The Judges’
Months before you received this booklet a few people were already
exploring the deepest parts of the jungles that are their imagination,
hunting for interesting problems from all walks of life. Many a prey
was shot during the hunt and the finest specimens have been
selected and stuffed for you to see.
Although the hunt for problems is an exciting one, especially when
meeting a cunning problem, the hunt for a good team on a contest
can’t beat it. The hunt for problems is just preparation to find the
best bait with which to lure the best teams into our carefully crafted
trap.
But even during the contest we won’t put our sharp senses to rest.
While you are trying hard to avoid our smaller traps in order to
reach the big one, we are still hunting. Hunting for errors in the
automated judging of your problems. Even though we are infallible,
these computers that automatically judge your solutions may not
be. Thus it might even occur that an erroneous judgment comes
within our sight and needs correction. Even though this might not
seem very nice of us, we are strict and fair in our judgments and
will correct errors if needed.
And we’ll be hunting for your questions. With every question we
receive we will hunt the issue down and then shoot the question,
replying you should “read the problem specification more carefully.”
For we are infallible and your question thus can’t possibly stem from
any ambiguities, errors or other unclarities left in the exercises. In
the remote case that, despite our infallibility, an imperfection might
have slipped past our nets, we will make sure all get to know about
it, not just you.
Every time we go hunting we are thrilled by the experience. Will
we catch something today? During the contest I hope we won’t
find much prey: the less we need to do, the smoother things go. I
hope you will also experience the thrill as you hunt for the solutions
within the limited time of your hunt.
Good hunting!

On behalf of the judges,
Thomas Schaap, Head of Judges

C

Rules & Regulations

1. Definitions
TU Delft	 Delft University of Technology
BAPC	 The 2008 Benelux Algorithm Programming Contest,

which takes place on 25 October 2008 at the faculty
of Electrical Engineering, Mathematics and Computer
Science of TU Delft.

CH	 W.I.S.V. `Christiaan Huygens’, Study Association
for the study programs Mathematics and Computer
Science of the TU Delft.

Organisation	 The members of the organizing committee of CH.
Website	 The website, maintained by the organisation and

available at http://www.bapc.eu
Jury	 The group of people responsible for making the

problems and checking the solutions submitted by
the participants.

Runners	 By the organisation appointed persons, responsible
for delivering print-outs, answering questions and
various other tasks.

Crew	 Organisation, members of the jury or runners.
Participant	 Member of a participating team that competes in the

BAPC.
Submission	 A submission of a solution by a team.

2. Organisation
2.1	 The organisation exists of members of CH.
2.2	 The organisation has formed a jury which exists of

people of the organisation, students and staff of the
TU Delft and other universities.

2.3	 The organisation has appointed some runners who
will watch over the competition areas during the
contest, hand out the print-outs and balloons and
will be available for practical questions during the
day.

D

2.4	 All staff will be recognizable by their shirt and/or badge.
2.5	 The organisation will form a board of contest leaders.

3. Participation
3.1 Introduction

3.1.1	 Participation is only possible in teams consisting of up to 3
persons.

3.1.2	 There are two pools: One for student teams and one for
business teams.

3.1.3	 Changing the composition of a team is only possible when
the organisation has agreed upon this.

3.1.4	 The organisation shall decide how many teams from each
institution shall be allowed to compete. The organisation
will consider the number of interested contestants from
each institution.

3.1.5	 The organisation has the right to deny teams of participation
before the start of the contest.

3.2 Student teams
A student team:
3.2.1	 may participate for free.
3.2.2	 exists of students from the same institution and who are

not participating in another team.
3.2.3	 has a coach, which is the contact person of a team. This

can be a team member or a student or staff member of the
institution.

3.2.4	 participates in the student teams pool for the title “Benelux
Champion Algorithm Programming 2008” with the cup and
the prize money of 1024,- 512,- and 256,- euro for first,
second, and third places respectively.

3.2.5	 consists of students from the same institution.
3.2.6	 consists of students who are eligible for the North Western

European Programming Contest 2008.

3.3 Business teams
A business team:
3.3.1	 pays the registration fee, before the start of the contest.

E

3.3.2	 consists out of persons who are employed by the same
company or institution.

3.3.3	 Compete in the pool business teams for the title “Benelux
Champion Algorithm Programming 2008” and the prize
money of 512 euro.

4. BAPC
4.1 Introduction

4.1.1	 The language used on BAPC is English.
4.1.2	 BAPC lasts for 5 hours.
4.1.3	 From the beginning until one hour before the end of the

BAPC, the scores are displayed.

4.2 Problems
4.2.1	 The jury will provide at least 6 and at most 10 problems.
4.2.2	 When a problem is unclear a “clarification request” can be

sent to the jury. The jury will respond to this request. If
the response is relevant to all teams, the jury will send the
response to all teams.

4.2.3	 The jury has the right to change or withdraw problems
during the contest. When this happens the jury will inform
all teams.

4.3 System
4.3.1	 Each team has the same workplace available.
4.3.2	 A solution has to be written in C/C++ or Java.
4.3.3	 The jury decides per programming language which libraries

and function calls are allowed to be used in the solutions.
4.3.4	 All prints made by the teams are brought by a runner.

Participants are not allowed to be near the printers.
4.3.5	 A team is allowed to bring up to 30 A4-sized pages of

documentation; no other documentation (including books
and manuals) is allowed.

4.3.6	 A team is not allowed to bring software or hardware on the
contest floor.

F

4.4 Department rules
4.4.1	 Inside the building where the BAPC takes place, the house

rules also apply.
4.4.2	 Inside computer rooms eating, drinking, and smoking is

not allowed.
4.4.3	 The use of hardware, including all calculators, which is not

approved by the organisation is forbidden, with exceptions
of simple watches and medical equipment.

4.4.4	 Changing of hardware or Operating software is strictly
forbidden.

4.4.5	 During the contesg, communication within the team and
crew is allowed. Communication with everyone else is
forbidden during the contest.

4.4.6	 Participants will follow orders given by the crew.
4.4.7	 Participants will wear the shirt and badge provided by the

organisation.

4.5 Judgment
4.5.1	 A submission is handled by an automated jury system.

The organisation is responsible for behavior of the system.
The jury will check the behavior of the system.

4.5.2	 Each submission is acknowledged.
4.5.3	 For each problem, the jury has a correct solution and test

data.
4.5.4	 A submission is correct when it has a solution to the input in

a time limit decided by the jury and the output is the same
as the output of the jury. This time limit is not announced
to the teams.

4.5.5	 The winner of a pool is decided by (in order):
	 1. The team with the most correctly solved problems.
	 2. The team with the least solving time. This is the sum

of the time needed for every solved problem, plus a
20-minute penalty for each wrong submission until the first
correct submission. (Incorrect solutions for which a team
has not submitted a correct solution or incorrect solutions
submitted after a correct solution was accepted do not add
to the solving time.)

10

4.5.6	 The jury is responsible for everything that has to do with
the problem set and can be contacted for this through the
“clarification requests.”

5. Special rules
5.1	 The organisation has the right to disqualify teams for

misbehavior or breaking the rules, including dislodging
extension cords, unauthorized modification of contest
materials, or distracting behavior.

5.2	 The contest leaders have the right to stop the contest,
extend the contest time, temporarily block submissions for
all teams or change the scores in exceptional conditions.

5.3	 In situations to which no rule applies, the organisation
decides.

11

Tips & Tricks
By Boaz Pat-El

How well a team performs during a contest is a function of each
member’s math, programming and co-operative skills. How you
should tackle the problems is something that differs per team and
therefore is something that you should work out for yourselves.
However, as jury we noticed that many teams make some common
mistakes. Here we illustrate some of these mistakes and expect
that, if you took the effort to read this page, you will avoid making
them during the contest.

Check the output specification
In a programming contest, every second counts. Because of this,
some teams are prone to submit their solutions in such a hurry
that they forget to check whether their output corresponds to the
specification of the problem. Results include, but are not limited
to, redundant (or lack of) commas, spaces or newlines, as well as
debug-information being present in the output.

O(n5) solutions usually don’t work
It’s nice that you found a solution to a problem. Still, check the
maximum input size of the problem before submitting. If sufficiently
large, your approach of going through the whole problem-space
will probably take up too much time and will be rejected.

Take edge cases into account
This is a no-brainer right? Even so, you would be surprised at how
many submissions solve only half of the input-cases, or give the
correct output for all but one case.

12

13

Organisation

Thomas Verwoerd
Chairman

Boaz Pat-El
Secretary, Judge

Robin van den Berg
Treasurer

Thomas Schaap
Head of Judges

Raul Kooter
Public Relations

Jeroen Dekkers
Systems

Mark Janssen
Organisation

Martin van Buuren
Organisation

Martijn van
Oosterhout
Systems

14

Arnout Boks
Judge

Cynthia Liem
Judge

Dr. P.G. Kluit
Judge, Legend

Eljakim Schrijvers Boris de Wilde David Koh

External Judges:

Michiel de Reus
Qualitate Qua

15

Special Thanks
The CHipCie would like to thank everybody who made the Benelux
Algorithm Programming Contest 2008 possible.

Prof.dr. Daan Lenstra
Wim Haan

John Veltema
René Pingen

Joey van den Heuvel
Maarten van der Beek

The Runners

The Jury, with special regard to:
Peter Kluit
David Koh

Kim Schrijvers
Boris de Wilde

Our Sponsors:
Technolution,

ASML, Atos Origin, Logica, NCIM, Ortec, Saen Options

W.I.S.V.
‘Christiaan Huygens’

16

Brought to you by:

Premium sponsor:

Sponsors:

W.I.S.V.
‘Christiaan Huygens’

Program Booklet

